Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sensors (Basel) ; 20(11)2020 May 31.
Article in English | MEDLINE | ID: covidwho-1374488

ABSTRACT

One of the key challenges of the recent COVID-19 pandemic is the ability to accurately estimate the number of infected individuals, particularly asymptomatic and/or early-stage patients. We herewith report the proof-of-concept development of a biosensor able to detect the SARS-CoV-2 S1 spike protein expressed on the surface of the virus. The biosensor is based on membrane-engineered mammalian cells bearing the human chimeric spike S1 antibody. We demonstrate that the attachment of the protein to the membrane-bound antibodies resulted in a selective and considerable change in the cellular bioelectric properties measured by means of a Bioelectric Recognition Assay. The novel biosensor provided results in an ultra-rapid manner (3 min), with a detection limit of 1 fg/mL and a semi-linear range of response between 10 fg and 1 µg/mL. In addition, no cross-reactivity was observed against the SARS-CoV-2 nucleocapsid protein. Furthermore, the biosensor was configured as a ready-to-use platform, including a portable read-out device operated via smartphone/tablet. In this way, we demonstrate that the novel biosensor can be potentially applied for the mass screening of SARS-CoV-2 surface antigens without prior sample processing, therefore offering a possible solution for the timely monitoring and eventual control of the global coronavirus pandemic.


Subject(s)
Betacoronavirus/isolation & purification , Biosensing Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Spike Glycoprotein, Coronavirus/isolation & purification , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigens, Viral/genetics , Antigens, Viral/isolation & purification , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/virology , Humans , Limit of Detection , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Smartphone , Spike Glycoprotein, Coronavirus/chemistry
2.
Biosensors (Basel) ; 11(7)2021 Jul 06.
Article in English | MEDLINE | ID: covidwho-1302155

ABSTRACT

The availability of antigen tests for SARS-CoV-2 represents a major step for the mass surveillance of the incidence of infection, especially regarding COVID-19 asymptomatic and/or early-stage patients. Recently, we reported the development of a Bioelectric Recognition Assay-based biosensor able to detect the SARS-CoV-2 S1 spike protein expressed on the surface of the virus in just three minutes, with high sensitivity and selectivity. The working principle was established by measuring the change of the electric potential of membrane-engineered mammalian cells bearing the human chimeric spike S1 antibody after attachment of the respective viral protein. In the present study, we applied the novel biosensor to patient-derived nasopharyngeal samples in a clinical set-up, with absolutely no sample pretreatment. More importantly, membrane-engineered cells were pre-immobilized in a proprietary biomatrix, thus enabling their long-term preservation prior to use as well as significantly increasing their ease-of-handle as test consumables. The plug-and-apply novel biosensor was able to detect the virus in positive samples with a 92.8% success rate compared to RT-PCR. No false negative results were recorded. These findings demonstrate the potential applicability of the biosensor for the early, routine mass screening of SARS-CoV-2 on a scale not yet realized.


Subject(s)
Biosensing Techniques/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/analysis , COVID-19/immunology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Cell Line , Early Diagnosis , Humans , Limit of Detection , Nasopharynx/immunology , Nasopharynx/virology , Population Surveillance , SARS-CoV-2/immunology
3.
J Virol Methods ; 293: 114166, 2021 07.
Article in English | MEDLINE | ID: covidwho-1192030

ABSTRACT

INTRODUCTION: As the second wave of COVID-19 pandemic is in progress the development of fast and cost-effective approaches for diagnosis is essential. The aim of the present study was to develop and evaluate the performance characteristics of a new Bioelectric Recognition Assay (BERA) regarding Sars-CoV-2 detection in clinical samples and its potential to be used as a point of care test. MATERIALS AND METHODS: All tests were performed using a custom portable hardware device developed by EMBIO DIAGNOSTICS (EMBIO DIAGNOSTICS Ltd, Cyprus). 110 positive and 136 negative samples tested by RT-PCR were used in order to define the lower limit of detection (L.O.D.) of the system, as well as the sensitivity and the specificity of the method. RESULTS: The system was able to detect a viral concentration of 4 genome copies/µL. The method displayed total sensitivity of 92.7 % (95 %CI: 86.2-96.8) and 97.8 % specificity (95 %CI: 93.7-99.5). When samples were grouped according to the recorded Ct values the BERA biosensor displayed 100.00 % sensitivity (95 %CI: 84.6-100.0) for Ct values <20-30. For the aforementioned Ct values the Positive Predictive Value (PPV) of the method was estimated at 31.4 % for COVID-19 prevalence of 1% and at 70.5 % for 5% prevalence. At the same time the Negative Predictive Value (NPV) of the BERA biosensor was at 100.0 % for both prevalence rates. CONCLUSIONS: EMBIO DIAGNOSTICS BERA for the detection of SARS-CoV-2 infection has the potential to allow rapid and cost-effective detection and subsequent isolation of confirmed cases, and therefore reduce household and community transmissions.


Subject(s)
Biosensing Techniques/methods , COVID-19/diagnosis , Point-of-Care Testing , SARS-CoV-2/isolation & purification , Animals , Chlorocebus aethiops , Humans , Limit of Detection , Sensitivity and Specificity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL